DNA Firewall for AI

Closed-Gap Architecture & Technical Specification (v1.4 Apr 2025)

Author: Jose Ayala Initial Release: March 20 2021 Latest Revision: v1.4

Executive Abstract

The **DNA Firewall** is a hardware-software co-design that places the mutable state of a large language model (LLM) into synthetic-DNA storage. A **30-petaFLOP** compute back-end executes inference and training while all persistent weights, optimizer moments, and audit logs reside in an air-gapped DNA vault. Immutable SHA-256 digests are interleaved within oligo payloads, providing cryptographic integrity proofs at the molecular layer. Emergency commands can freeze learning ($\eta \rightarrow 0$) and block DNA writes within 200 µs.

1 System Targets

Parameter	Value	Rationale
Peak FP8 FLOPs	≥ 30 PFLOP/s	Research-grade fine-tuning of 70-B parameter LLMs
Cold-Boot Integrity Verification	< 45 min for 500 GB model	Bounded downtime while maintaining full integrity check
Emergency Freeze Latency	< 0.2 ms	Containment of runaway learning

2 Compute Fabric

The research cluster comprises:

- 8 × *NVIDIA GH200 Grace-Hopper* nodes (4 PFLOP FP8 each) → **32 PFLOP** aggregate.
- 2 × IBM Qiskit Runtime Plan (27-qubit Falcon) for hash-pre-image security proofs (on-prem or low-latency link).

• Optional *D-Wave Advantage* lease (5 000 qubits) for Ising-model hyper-parameter search.

3 Large-Language-Model Stack

3.1 Baseline Architecture (Silicon-Only)

Embedding \rightarrow Transformer \times N \rightarrow LN \rightarrow LM Head

All weights $W \in \mathbb{R}^P$ reside on HBM; checkpoints stored on SSD \rightarrow risk of root-level tampering.

3.2 DNA-Firewall Architecture

DNA Vault
$$(W_0)$$
 \longrightarrow Sequencer \longrightarrow HBM (volatile) \triangle \triangle W \longleftarrow Synthesizer \longleftarrow

Write path is *human-gated*; learning rate can be zeroed by hardware kill-switch that disables gradient-accumulation SRAM banks.

4 Immutable SHA-256 Encoding in DNA

4.1 Mathematical Construction

For every 512-bit weight block B we compute:

$$H = ext{SHA } 256(B) \in \{0,1\}^{256}$$

We append H to B and map each 2-bit symbol to nucleotides A, C, G, T. The oligo layout:

Note: GC-content is constrained to 45–55 % and homopolymer runs are limited to 3 nt to ensure synthesis fidelity.

4.2 Integrity Verification

1. Sequencer streams oligo → bit-stream.

- 2. Split into (B', H').
- 3. Recompute SHA256(B'); assert equality with H'.

Collision probability $\leq 2^{-256}$; sequencing error detected by CRC16 before hash evaluation.

5 Snapshot & Rollback Protocol

After every $k=1\,000$ optimizer steps:

- 1. Compute $\Delta W = W_t W_{t-k}$.
- 2. Generate hash chain $C_t = SHA256(\Delta W \parallel C_{t-1})$.
- 3. Write $\{\Delta W, C_t\}$ to new DNA cartridge if $\Delta loss < \varepsilon$ and operator signs.
- 4. Old cartridges archived (WORM) → enables deterministic rollback.

6 Emergency Controls

- Learning-Freeze GPIO: Hardware line pulls η =0 in optimizer ASIC; gradients discarded within 200 μ s.
- Write-Inhibit Relay: Cuts 12 V rail to DNA synthesizer in vault; physical key + biometric required to reset.
- Quantum-Signed Stop Token: Local IBM Falcon generates 256-bit token; compute fabric must echo within 50 μs or power down.

7 Throughput & Latency Analysis

 $\text{text}\{Boot\ time\} = \frac{\|W\|}{R_{seq}} + \frac{\|W\|}{B_{PCle}} + \text{text}\{Decode\}_{\text{overhead}}\}$

With |W| = 500 GB, $R_{seq} = 240$ MB/s, PCIe4 = 28 GB/s, Decode_{overhead} \approx 20 % sequencing time \rightarrow \approx 42 min, dominated by sequencing.

8 Cost & Power Summary

Subsystem	CapEx USD	Max Power
GH200 Cluster (8 nodes)	≈ \$3.0 M	26 kW
DNA Vault (sequencer + synthesizer + HVAC)	≈ \$0.25 M	2 kW

Subsystem	CapEx USD	Max Power
Quantum API (IBM/D-Wave) 1-yr	\$0.12 M	Cloud
Total	\$3.37 M	28 kW

9 Implementation Timeline

- 1. Q2 2025: Order GH200 nodes; assemble optical diode & PCIe read-gate.
- 2. Q3 2025: Validate SHA-256 oligo encoding on 1-GB toy model (multi-flow-cell).
- 3. Q4 2025: Integrate emergency freeze GPIO & vault relay; live ΔW streaming tests.
- 4. Q1 2026: Full-scale 70-B LLM training with DNA snapshots every 1 000 steps (writer throughput budget ≥ 50 MB/h).

References

- 1. National Institute of Standards and Technology, "Secure Hash Standard (FIPS 180-4)," 2015.
- 2. Chen et al., DNA Typewriter, Nature, 2022.
- 3. Bojarski et al., Quantum-Secure DNA PUFs, 2024.
- 4. NVIDIA GH200 Product Brief, 2024.
- 5. IBM Quantum Services, 2024.
- 6. D-Wave Advantage System Datasheet, 2024.
- © NeuralBytes 2021–2025 (Jose Ayala). All rights reserved.